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The continuous configuration time-dependent self-consistent field (CC-TDSCF) method is employed to calculate
the flux-flux autocorrelation functions for the H+ CH4 reaction on the potential energy surface recently
developed by Manthe and co-workers. We include up to 10 out of the total 12 degrees of freedom in our
calculations, only with the doubly degenerate bending modes involving the motion of the hydrogens in
nonreacting CH3 group excluded. Comparison of flux-flux autocorrelation functions obtained by using the
exact dynamics method and the CC-TDSCF method shows that the CC-TDSCF method is capable of producing
very accurate results. Our calculations clearly reveal that the CC-TDSCF method is a powerful approximation
quantum dynamics method. It allows us to partition a big problem into several smaller ones. By changing
partition systematically, one can investigate the correlations between different degrees of freedom. By
grouping modes with strong correlations together as a cluster, one can systematically improve accuracy of
the result.

I. Introduction

In the last 2 decades with development of various efficient
representation schemes1-3 and time propagators,4,5 the time
dependent wave packet method has became a dominant com-
putational tool for studying complex chemical dynamics prob-
lems with more than three degrees of freedom. It has enjoyed
considerable successes on accurate quantum reactive scattering
studies of four-atom chemical reactions in a full six dimensions.6-9

The main advantage of the TD method over the traditional
time-independent method is that it scales almost linearly with
the number of basis functions. However, due to the quantum
nature, that number of basis functions grows exponentially with
dimensionality, so it is only practical at present to deal with
seven to eight strongly coupled degrees of freedom.10 Hence,
to study quantum dynamical problems involving many atoms,
one has to resort to the reduced dimensionality approach to cut
down the number of degrees of freedom included in dynamical
studies or some computational approximate methods to over-
come the scaling of effort with dimensionality.

A promising approach is the time-dependent self-consistent
field (TDSCF) method.11-20 In the simplest version, i.e., the
single configuration time-dependent self-consistent field (SC-
TDSCF) approach, the wave function of the system is written
as a direct product of the wave functions for subsystems.11-14,16

A principal drawback of SC-TDSCF is that it replaces exact
interaction between subsystems by mean-field coupling, result-
ing in the lack of correlations between subsystems. One way to

account for the important correlations neglected in SC-TDSCF
is to add wave functions with different configurations to give
more flexibility to the wave function of the system, resulting
in the so-called multiconfiguration time-dependent self-
consistent field (MC-TDSCF) method.17-21 Wave functions with
different configurations are usually constructed by imposing
orthogonal condition explicitly, making it hard to use more than
a few configurations in numerical implementation. Furthermore,
the resulting equations for MC-TDSCF are very complicated
compared to those in SC-TDSCF method. For these reasons,
MC-TDSCF has only been applied to some model problems.

The closely related multiconfiguration time-dependent Hartree
method (MCTDH) generalizes MC-TDSCF in a systematic way,
thus eliminating the need for choices of the TDSCF states.22,23

It has successfully been applied to study various realistic and
complex quantum dynamical problems (see ref 22 for refer-
ences). Very recently, it was successfully applied to calculate
the J ) 0 cumulative reaction probability the six atom H+
CH4 reaction in full 12 dimensions on an ab initio potential
energy surface (PES), from which the thermal rate constants in
a broad temperature region were obtained for the reaction.24

However, the general application of MCTDH method to strongly
correlated systems yields a numerical method wherein the
number of possible TDSCF configuration grows exponentially
with the number of degrees of freedom, again confining practical
use of the method to relatively small systems.

Recently, we proposed a new and efficient scheme for MC-
TDSCF, namely, continuous-configuration time-dependent self-
consistent field (CC-TDSCF) method.25 Very often dynamical
processes in polyatomic systems can be described as a system
of a few strongly coupled degrees of freedom which characterize
the process of interest, coupled with clusters of bath modes.
Bath modes inside a cluster may be coupled to each other, but
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the coupling between bath modes in different clusters may be
neglected. The basic idea for our new method is to use discrete
variable representation (DVR)2 for the system and then to each
DVR point of the system we associate a configuration of wave
function in terms of direct product wave functions for different
clusters of the bath modes. In this way, the correlations between
the system and bath modes, as well as the correlations between
bath modes in each individual cluster can be described properly,
while the correlations between bath modes in different clusters
are neglected. Since the DVRs used for the system are
orthogonal, the resulting equations are as simple in structure as
those for SC-TDSCF. The dimensionalities of the equations are
determined by the number of degrees of freedom in the system
and in each individual cluster of bath modes. The method was
tested on a model problem of a one-dimensional double well
linearly coupled to a harmonic bath.26-28 It was found for this
model harmonic bath system that the CC-TDSCF approach is
much more accurate than the traditional SC-TDSCF method,
because it allows the bath wave function to change continuously
along the system coordinate, in contrast to the SC-TDSCF
method which just uses one bath wave function. Our test
demonstrated that the CC-TDSCF approach was capable of
producing semiquantitative or even quantitative results.

In the present work we test CC-TDSCF method on the H+
CH4 f H2 + CH3 reaction. Because of its important roles in
CH4/O2 combustion chemistry, the reaction has been the subject
of both experimental and theoretical interest for many years.
Because five of the six atoms involved are hydrogens, it is an
ideal candidate for high quality ab initio quantum chemistry
calculations of the potential energy surface and quantum
dynamics studies. This reaction has become a benchmark for
developing and testing various theoretical methods to accurately
study polyatomic chemical reactions.10,29-35 Very recently,
Manthe and co-workers constructed a high quality PES for the
reaction in the vicinity of the saddle point. The PES can be
used to calculate thermal rate constant for the reaction by using
flux-flux autocorrelation-based methods.24 The cumulative
reaction probabilities for the total angular momentumJ ) 0
were calculated on the PES from which the thermal rate
constants for the reaction in a broad range of temperature were
obtained. It was found that the theoretical thermal rate constants
has an accuracy comparable to or even exceeding experimental
precision. In this work, we use the PES developed by Manthe
and co-workers to test the accuracy of the CC-TDSCF method
for the H + CH4 reaction.

In the following section, we introduce the CC-TDSCF method
in a general form and review the transition state wave packet
method (TSWP). In Sec. III, we then present the results for
some seven dimensional calculations and 10 dimensional
calculations by using the approximation CC-TDSCF method,
in comparison with the results from exact calculations. We
briefly summarize in section IV.

II. Theory

A. CC-TDSCF Method. Consider a general multidimen-
sional problem with Hamiltonian written as

wheres andxi (i ) 1, ...,N) are multidimensional vectors, with
dimension equal tons andni, respectively. We calls the system
coordinates, andxi the ith cluster of bath coordinates. Hence

the total dimension of the problem isns + ∑i
N ni. We partition

it into anns dimensional system andN clusters of bath modes.
In eq 1, the Hamiltonians for systems and bath clusterxi are
given by

where T̂ is the kinetic energy operator,V(x) is the one-
dimensional reference for coordinatex.

The CC-TDSCF ansatz for the total wave function is written
as follows25

where |sR〉 denotes DVR points for the system coordinatess
which is constructed via direct product of DVR grids for
individual coordinatesi (i ) 1, ...,ns); ΦR(x1, ..., xN, t), which
depends on the DVR point|sR〉, is written as a product of single-
mode functions as in the single configuration TDSCF

whereφR
i (xi, t) is the time-dependent wave function for theith

cluster of bath coordinates,xi, at |sR〉 DVR point for the system
coordinates. It has the following constraints

for i ) 1, 2, ...,N. These constraints will guarantee that the
single-mode functions are normalized at any timet.

Now we introduce the “single-hole function”:

ThenΦR in eq 5 can be written as

Employing the Dirac-Frenkel variational principle,36 we can
obtain the equations of motions as25

By defining a new function

we can rewrite eq 10 as

The single-mode functionφR
i can be obtained by multiplying

Ĥ(s, x1, x2, ...,xN) ) ĥ(s) + ∑
i

N

ĥ(xi) + V(s, x1, x2, ...,xN)

(1)

ĥ(s) ) ∑
j

ns

[T̂(sj) + V(sj)] ) ∑
j

ns

ĥ(sj) (2)

ĥ(xi) ) ∑
j

nj

[T̂(xj
i ) + V(xj

i )] ) ∑
j

nj

ĥ(xj
i ) (3)

Ψ(s, x1, ...,xN, t) ) ∑
R)1

M

CR(t)|sR〉ΦR(x1, ...,xN, t) (4)

ΦR(x1, ...,xN, t) ) ∏
i)1

N

φR
i (xi, t) (5)

〈φR
i (t)| ∂∂t

φR
i (t)〉 ) 0, and〈φR

i (0)|φR
i (0)〉 ) 1 (6)

ΦR
(i) ) φR

1...φR
(i-1)

φR
(i+1)...φR

N (7)

ΦR ) φR
i ΦR

(i) (8)

iĊR ) ∑
â

〈sRΦR|Ĥ|sâΦâ〉 Câ, for R ) 1, ...,M (9)

i[ĊR φR
i + CRφ̇R

i ] ) ∑
â

〈sRΦR
(i)|Ĥ|sâΦâ

(i)〉[Câ φâ
i ] (10)

for i ) 1, 2, ...,N

æR
i ) CR φR

i (11)

iæ̆R
i ) ∑

â

〈sRΦR
(i)|Ĥ|sâΦâ

(i)〉 æâ
i , i ) 1, ...,N (12)
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CR
/ on both sides of eq 11 and resorting the normalization

conditions for the single-mode functions

where||f|| ) x〈f|f〉 denotes the modulo of a function.
We can see from eq 9 that the evolution ofCi in eq 9 is

governed by an effective Hamiltonian arising from averaging
the total Hamiltonian over all the bath modes at each DVR point
in the system coordinates, while the evolution of wave function
for the ith cluster of bath modes is governed by an effective
Hamiltonian arising from averaging the total Hamiltonian over
all the bath clusters except itself (ith mode) on each DVR point
in the system coordinates. Hence to propagate the total wave
function, one needs to solve anns dimensional equation for the
system andN equations for all theN bath clusters with a
dimension equal tons + ni for the ith cluster.

To propagate CC-TDSCF equations given in eq 9 and 12,
one needs to calculate the averages of Hamiltonian over wave
functions. Let us first take a look at the average in eq 12.
Substituting the Hamiltonian given in eq 1 into the average,
we can get

where

with φR
k(xk, t) given in eq 5, is the expectation value of

Hamiltonian, or, energy forith bath cluster at the|sR〉 DVR
point. Veff(sR, xi) in eq 14 is the effective potential at system
DVR |sR〉 and coordinates forith bath clusterxi.

To discuss the first term in eq 14, we write a system DVR
point |R〉 as |skµ〉|R(k)〉, with |skµ〉 denoting theµth DVR point
for kth system coordinate,|R(k)〉 denoting the corresponding
DVR points for the other coordinates in the system. For thekth
system coordinate, we have

Hence the〈sR|ĥ(s)|sâ〉〈ΦR
(i)|Φâ

(i)〉 matrix is block diagonal for
each system coordinate as in ordinary DVR representation.
However, the matrix for each system coordinate is now time-
dependent, in contrast to that in ordinary DVR representation.

Once having matrix elements for〈sRΦR
(i)|Ĥ|sâΦâ

(i)〉, it is
straightforward to do one more integration with the wave
function for theith bath cluster to get

With matrix elements for 〈sRΦR|Ĥ|sâΦâ〉 and
〈sRΦR

(i)|Ĥ|sâΦâ
(i)〉 written down, we can propagate the equations

of motion for CR(t) and φR
i . We use split-operator method to

carry out these propagations. Everything is very straightforward,
as in ordinary DVR based wave packet propagation, except that
the Hamiltonians involved now are time-dependent. So we have
to diagonalize relevant matrices at every step. This may produce
a bottleneck for computational speed if the maximum number
of DVR points used for one system coordinate becomes large.
While in the current application this number is around 50, so it
does not cause any problem to the computation.

B. Application to the H + CH4 System.The thermal rate
constant,k(T), can be calculated from the time integral of a
flux-flux autocorrelation function37-39

whereQr(T) is the reactant partition function

and tc ) t - iâ/2 with â ) (kBT)-1. C ff
n is defined as the

autocorrelation function for thenth transition state wave
packet.37 In present study, we focus on the flux-flux autocor-
relation function for its ground transition state wave packet37

The wave functionψg(t) for the ground-state transition state
wave packet is given by

where|gk(xk)〉 (k ) 1, 2, ...,N) is the ground-state wave function
for hk(xk), |+〉 is the flux operator eigenfunction with nonzero
eigenvalue ofλ for coordinate perpendicular to the dividing
surface in system,|g0(s′)〉 is the ground-state wave function on
the dividing surfaces′. From eq 21, one can see that we first
propagate each transition state wave packet in imaginary time
to â/2, and then propagate it in real time.

Following Manthe and co-workers,24,29,30we use transition
state normal coordinate system in our calculation to minimize
correlation effects in the transition state region. Normal modes
and normal coordinates were calculated at the transition state
geometry and the corresponding linear transformation matrix
was used throughout the calculation to convert the working
coordinates into Cartesian coordinates. The transition state for
the reaction, Ha-Hb-CH3, is of C3V symmetry with Ha-Hb-C
lying on theC3V symmetry axis. Here we labeled two hydrogen
atoms involving in reaction to distinguish them from three other
hydrogen atoms in the CH3 group. For such a system of six
atoms, there are 12 normal vibrational modes. They are the
imaginary mode (Q1) concerning the asymmetric stretching
motion of the Ha-Hb-CH3 fragments on theC3V symmetry axis,
a doubly degenerate low-frequency bending modes (Q2, Q3)
mainly involving the motion of Ha atom, an umbrella mode
(Q4) for the nonreacting CH3 group, a doubly degenerate high-

CR
/ æR

i ) |CR|2 φR
i f φR

i )
CR

/ æR
i

||CR
/ æR

i ||
(13)

〈sRΦR
(i)|Ĥ|sâΦâ

(i)〉

) 〈sRΦR
(i)|ĥ(s) + ∑

k

N

ĥ(xk) + V(s, x1, x2, ...,xN)|sâΦâ
(i)〉

) 〈sR|ĥ(s)|sâ〉〈ΦR
(i)|Φâ

(i)〉 + [∑
k

N

〈ΦR
(i)|ĥ(xk)|ΦR

(i)〉 +

〈ΦR
(i)|V(sR,x1, x2, ...,xN)|ΦR

(i)〉]δR,â

) 〈sR|ĥ(s)|sâ〉〈ΦR
(i)|Φâ

(i)〉 + [ĥ(xi) + ∑
k*i

N

ER
eff(xk) +

Veff(sR, xi)]δR,â (14)

ER
eff(xk) ) 〈φR

k(xk, t)|h(xk)|φR
k(xk, t)〉 (15)

〈skµ|〈R(k)|ĥ(sk)|skν〉|â(k)〉〈ΦskµR(k)
(i) |Φskνâ(k)

(i) 〉 )

〈skµ|ĥ(sk)|skν〉〈ΦskµR(k)
(i) |Φskνâ(k)

(i) 〉δR(k)â(k) (16)

〈sRΦR|Ĥ|sâΦâ〉 ) 〈φR
i |〈sRΦR

(i)|Ĥ|sâΦâ
(i)〉|φâ

i 〉

) 〈sR|ĥ(s)|sâ〉〈ΦR|Φâ〉 + [∑
k

N

ER
eff(xk) +

Veff(sR)]δR,â (17)

k(T) ) Qr(T)-1 ∫0

∞
dt Cff(t), (18)

Cff(t) ) tr[F̂eiĤtc*F̂e-iĤtc] ) ∑
n) 0

C ff
n(t), (19)

Cff(t) ) C ff
0(t) ) 〈ψg(t)|F̂|ψg(t)〉 (20)

ψg(t) ) e-iĤte-Ĥâ/2xλ|+〉|g0(s′)g1(x
1)...gN(xN)〉, (21)
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frequency bending modes (Q5, Q6) mainly involving the motion
of Hb atom, another doubly degenerate bending modes (Q7, Q8)
essentially involving the motion of the hydrogens in nonreacting
CH3 group, a symmetric stretching mode (Q9) of the Ha-Hb-
CH3 fragments on theC3V symmetry axis, and a symmetric (Q10)
and doubly degenerate asymmetric stretches (Q11,Q12) concern-
ing mainly the nonreacting CH3 group. Among all these modes,
Q1 andQ9 are directly relevant to the reaction.

With mixed derivatives in the kinetic energy resulting from
vibrational angular momentum neglected, the Hamiltonian for
the system can be simply written as

where

is the one-dimensional Hamiltonian for these normal modes.
The reference potentialVi(Qi) for modei is taken as

To choose a proper dividing surface, we define two new
coordinatesQ′1 andQ′9 by rotatingQ1 andQ9 coordinates by
an angleθ ) 25°

The dividing surface is located asQ′1 ) 0 in our calculation.

III. Results

A. Numerical Details. To check the accuracy of the CC-
TDSCF method, we need to calculate the autocorrelation
functions by using exact quantum dynamics method. With the
computer available to us, we are able to include up to 10 of out
the total 12 degrees of freedom. Intensive tests reveal that the
doubly degenerate bending modes (Q7, Q8) involving the motion
of the hydrogens in nonreacting CH3 group essentially play no
role in the dynamics, hence are excluded in this study. We use
49 sine-DVR in a range of [-120, 120] forQ1, 13 sine-DVR
in a range of [-100,50] for Q4, 29 sine-DVR in a range of
[-50, 150] forQ9. For Q2, Q3, Q5, Q6, Q11, andQ12, we use
five potential optimized DVR (PODVR),40 and forQ10, we use
six PODVR. Hence the basis number used in the exact ten-
dimensional quantum dynamics calculation reaches 1.7× 109.
The temperature considered in this study is 500 K. We propagate
wave packet 50 steps for imaginary time propagation in eq 21.
For real time propagation, the time step is 5 au for the exact
calculation and 1 au for the CC-TDSCF method because of the
self-consistent nature of the method.

B. Seven-Dimensional (7D) Results.We first test the CC-
TDSCF method on seven low-frequency modes, i.e.,Q1, Q2,
Q3, Q4, Q5, Q6, and Q9. In the CC-TDSCF calculation, we

chooseQ1 andQ9 as the system coordinatess. The other five
coordinates involved,Q2, Q3, Q4, Q5, Q6, are treated as five
bath clusters, i.e., with one coordinate in every bath cluster. In
the paper, we use{(1, 9),(2),(3),(4),(5),(6)} to denote this kind
of partition in coordinates, with the numbers in the first pair of
parentheses referring the system coordinates, and the number-
(s) in the following pairs of parentheses referring the coordinate-
(s) in each bath cluster. Under this partition, one needs to solve
one two-dimensional equation for the system, plus five three-
dimensional equations for the bath clusters.

Figure 1 showsCff as a function of real time propagation,t,
for the ground transition state by using both exact quantum
method and CC-TDSCF method. The exactCff shown in Figure
1 exhibits a typical behavior for the flux-flux autocorrection
function for a direct reaction: it decays quickly as time
increases, goes through zero att ∼ 300 au, then becomes a
little bit negative, and finally gets stabilized at zero att ∼ 700
au. Hence for the temperature considered here, recrossing in
flux-flux autocorrection does occur, although it is not sub-
stantial. From Figure 1, we can see that overall agreement
between the CC-TDSCFCff and the exact one is quite good. At
t ) 0, it is about 12% smaller than the exactCff. It decays
slightly slower than the exactCff , hence crosses with the exact
Cff curve att ∼ 220 au. The CC-TDSCFCff also moves in and
out of the recrossing region slightly slower than the exact one.

It is quite interesting to see that the largest difference between
CC-TDSCF and exactCff is at t ) 0, right after the imaginary
time propagation. Neglecting of correlations between bath modes
prevent the whole system from relaxing as in the exact treatment
during imaginary time propagation, making the CC-TDSCFCff

at t ) 0 smaller than the exact one. While during the real time
propagation, neglecting of correlations between bath modes
makes the whole system slower in dissipating energy and in
moving away from the dividing surface. As a result, the CC-
TDSCFCff decays slightly slower than the exact one as shown
in Figure 1.

Figure 2 shows the exact and CC-TDSCFCfs as a function
of time by integrating theCff function shown in Figure 1. The
curves looks very similar, except that the CC-TDSCFCfs is
lower than the exact one. Att ∼ 300 au when they reach their
maximum values, the CC-TDSCFCfs is about 9% smaller than
the exact one. The difference increases to 12% att ∼ 700 au
when they are stabilized. Thus, the CC-TDSCF method intro-

Figure 1. Cff as a function of real time propagation for the ground
transition state by using both exact quantum method and CC-TDSCF
method withQ1, Q2, Q3, Q4, Q5, Q6, Q9 included in calculations.

Ĥ(Q1, Q2, ...,Q12) ) ∑
i)1

12

-
1

2

∂
2

∂Qi
2

+ V (Q1, Q2, ...,Q12)

) ∑
i)1

12

hi(Qi) + V(Q1, Q2, ...,Q12) (22)

hi(Qi) ) -1
2

∂
2

∂Qi
2
+ Vi(Qi) (23)

Vi(Qi) ) 0, for Q1, Q4, andQ9

Vi(Qi) ) V (Q1 ) 0, ...,Qi, ...,Q12 ) 0),
for other coordinates.

Q′1 ) sin θ Q1 + cosθ Q9

Q′9 ) cosθ Q1 - sin θ Q9.
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duces an error of 12% by approximating a seven-dimensional
problem with one two-dimensional plus five three-dimensional
problems.

Under the{(1, 9),(2),(3),(4),(5),(6)} partition, we only took
into account the correlations between system coordinates and
individual bath coordinate, while neglected the correlations
between bath coordinates. To investigate the importance of the
correlations between bath coordinates, we carried out many
calculations by using different partition of the coordinates. It
was found that the Ha bending modesQ2 andQ3 have substantial
correlations with the Hb bending modesQ5 andQ6 on the same
plane, i.e.,Q2 correlatesQ5, Q3 correlates withQ6. Thus, an
higher accuracy may be achieved by puttingQ2 andQ5 in one
bath cluster,Q3 andQ6 in another bath cluster. As we can see
from Figure 2 that CC-TDSCFCfs with the{(1, 9),(4),(2, 5),(3,
6)} partition is considerably more accurate than that with the
{(1, 9),(2),(3),(4),(5),(6)} partition, when compared to the exact
result. It is only smaller than the exact result by 3.5%. Under
this partition, one needs to solve one two-dimensional equation
for the system, one three-dimensional equation forQ4, two four-
dimensional equations for (Q2, Q5) and (Q3, Q6). If we put the
umbrella modeQ4 in the system, i.e., with a{(1, 9, 4),(2, 5),(3,
6)} partition, we can further reduce the difference between the
CC-TDSCF and exactCfs to 2%. As we can see from Figure 2
that the CC-TDSCFCfs with the{(1, 9, 4),(2, 5),(3, 6)} partition
is essentially identical to the exact one, indicating that there is
very little correlation between (Q2, Q5) and (Q3, Q6) clusters.
Another way to improve the accuracy of the{(1, 9),(4),(2, 5),-
(3, 6)} partition is to moveQ2 and Q3 modes to the system,
resulting a{(1, 9, 2, 3),(4),(5),(6)} partition. Figure 2 shows
that the accuracy of the{(1, 9, 2, 3),(4),(5),(6)} partition is very
close to that of the{(1, 9, 4),(2, 5),(3, 6)} partition. Compared
to the{(1, 9),(4),(2, 5),(3, 6)} partition, the{(1, 9, 4),(2, 5),(3,
6)} partition takes into account the correlations betweenQ4

mode andQ2, Q3, Q5, Q6 modes, while the{(1, 9, 2, 3),(4),-
(5),(6)} partition takes into account the correlation betweenQ4

mode andQ2, Q3 modes, the correlations betweenQ2 andQ6,
Q3 andQ5. The close agreement between the{(1, 9, 4),(2, 5),-
(3, 6)} partition and the{(1, 9, 2, 3),(4),(5),(6)} partition
indicates to some extent that the correlation betweenQ4 mode
and Q2, Q3 modes are more important than the correlation
betweenQ4 mode andQ5, Q6 modes.

C. Ten Dimensional (10D) Results.Figure 3 and Figure 4
shows Cff and Cfs, respectively, as a function of real time

propagation,t, for the ground transition state by using both exact
quantum method and CC-TDSCF method withQ10, Q11, and
Q12 included in dynamical calculations. Before comparing the
exact 10D result with the CC-TDSCF ones, let us make a
comparison between the 7D and 10D exact results shown in
Figures 1 and 3. In our calculations, we set the ground-state
energy for every degree of freedom included in the calculation
to be zero. Hence, if a degree of freedom plays no role to the
dynamics,Cff will only change very little (due to potential
average effect) when that degree of freedom is included in
dynamics calculations. Figure 3 show that the exactCff changes
substantially whenQ10, Q11, andQ12 are included in dynamical
calculation. Att ) 0, the 10DCff in Figure 3 is larger than 7D
Cff in Figure 1 by about 60%. For the correspondingCfs shown
in Figure 2 and Figure 4, the 10DCfs is about 50% larger than
the 7DCfs. It is well-known that there is some kind of mixing
between these stretching modes and the umbrella mode in
normal coordinates, in particular at geometries far way from
the reference geometry. Hence freezing stretch modes as in the
7D calculation may substantially underestimateCfs, as discussed
by Miller and co-workers in the H2 + OH system.41

As in the 7D case shown in Figure 1, we carried out a CC-
TDSCF calculation with a{(1, 9),(2),(3),(4),(5),(6),(10),(11),-
(12)} partition. The comparison between the exact 10DCff and
the CC-TDSCF one shown in Figure 3 is very similar to that in

Figure 2. Cfs as a function of real time propagation for the ground
transition state by using both exact quantum method and CC-TDSCF
method withQ1, Q2, Q3, Q4, Q5, Q6, andQ9 included in the calculations.

Figure 3. Same as Figure 1, except with three high-frequency modes,
Q10, Q11, andQ12, included.

Figure 4. Same as Figure 2, except with three high-frequency modes,
Q10, Q11, andQ12, included.
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Figure 1, except that the difference between these two curves
increases. Att ) 0, the exact one is larger than the CC-TDSCF
one by 22%. Consequently, the difference inCfs between them
shown in Figure 4 also increases compared to that in 7D. When
stabilized, the exactCfs is about 22% larger than the CC-TDSCF
one. Thus, these three high frequencies modes also have some
strong correlations with themselves or other modes. Once again,
we can see that the CC-TDSCFCff decays slower than the exact
one as in 7D case, and it becomes slightly larger than the exact
one att ∼ 230 au for the reason discussed.

As in 7D calculations shown in Figure 2, bath modes are
combined together as clusters to take into account the correla-
tions between them. One partition we tried is{(1, 9),(4),(2, 5),-
(3, 6),(10, 11, 12)} following the 7D calculation, with additional
three high frequencies modes put in one cluster. As we can see
from Figure 4 that the{(1, 9),(4),(2, 5),(3, 6),(10, 11, 12)}
partition is considerably more accurate than the{(1, 9),(2),-
(3),(4),(5),(6),(10),(11),(12)}. It cuts the error of the later
partition by half to about 11%, compared to the exact result.
But this error is obviously larger than that of 3.5% for the{(1,
9),(4),(2, 5),(3, 6)} partition, indicatingQ10, Q11, andQ12 modes
not only correlate among themselves, they also correlate to other
modes.

After intensive tests, we found thatQ10, Q11, andQ12 also
correlate withQ2 andQ3 modes. SinceQ2(Q3) correlates with
Q4, Q5, Q6 modes to some extent, one way to take into account
all the correlationsQ2 andQ3 have withQ4, Q5, Q6, Q10, Q11,
andQ12 modes is to putQ2 andQ3 in the system, resulting in
a {(1, 9, 2, 3),(4),(5),(6),(10, 11, 12)} partition. Under this
partition, one needs to solve one four-dimensional equation for
the system, three five-dimensional equation forQ4, Q5, andQ6,
and one seven-dimensional equation forQ10, Q11, andQ12. It
sounds quite expansive to solve these equations, but compared
to solving the original ten-dimensional equation, the computa-
tional efforts involved here is substantially reduced because the
number of basis used in the exact 10D calculations is 13× 5
× 5 ) 325 times larger than that for the seven-dimensional
equation. For the basis set used in this study, the CC-TDSCF
calculation is about a factor of 10 faster than the exact one. As
we can see from Figure 4 that the CC-TDSCFCfs with the{(1,
9, 2, 3),(4),(5),(6),(10, 11, 12)} partition agrees with the exact
one rather well. It is only smaller than the exact one by 6% at
t ) 700 au.

IV. Conclusions

We calculated the flux-flux autocorrelation functions for the
H + CH4 reaction by using the exact quantum dynamics method
and CC-TDSCF method on the potential energy surface recently
developed by Manthe and co-workers. SinceQ7 andQ8 are not
important to the dynamics, we did not include them in present
study. For the remaining 10 modes, we carried two sets of
calculations, one with seven low-frequency modes,Q1-Q6, and
Q9 included, the other including all these 10 modes.

Comparison of flux-flux autocorrelation functions obtained
by using the exact dynamics method and the CC-TDSCF method
revealed that the CC-TDSCF method is capable of producing
very accurate results. For the 7D case, the largest difference
between the exact one and the CC-TDSCF one is 12% when
the five bath modes were treated as five bath clusters in the
{(1, 9),(2),(3),(4),(5),(6)} partition. This error was reduced to
3.5% when the{(1, 9),(4),(2, 5),(3, 6)} partition was employed.
The CC-TDSCF method gave an error of 2% with the{(1, 4,
9),(2, 5),(3, 6)} partition. When the three high-frequency modes
Q10, Q11, and Q12 were included in dynamics calculations, a

simple {(1, 9),(2),(3),(4),(5),(6),(10),(11),(12)} partition gave
an error of 22%, indicating these three high-frequency modes
have some strong correlations among themselves and/or with
other bath modes. By using a{(1, 9),(4),(2, 5),(3, 6),(10, 11,
12)} partition, we can reduce the error to 11%. The error can
be reduced further to 6% by puttingQ2 andQ3 in the sytem in
a {(1, 9, 2, 3),(4),(5),(6),(10, 11, 12)} partition.

All these calculations clearly showed that the CC-TDSCF
method is a very powerful approximation quantum dynamics
method. It allows us to partition a big problem into several
smaller ones. By changing partition systematically, one can
investigate the correlations between different degrees of free-
dom. By grouping modes with strong correlations together as a
cluster, one can systematically improve accuracy of the result.
And, by choosing the system and bath clusters carefully, one
can always keep the number of dimensions in CC-TDSCF within
the computational power one has available.
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